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Context: Models of how people move around cities play a role in making decisions about urban and land-
use planning. Previous models have been based on space and time, and have neglected the social aspect
of travel. Recent work on agent-based modelling shows promise as a new approach, especially for models
with both social and spatial elements.

Objective: This paper demonstrates the design and implementation of an agent-based model of social
activity generation and scheduling for experimental purposes to explore the effects of social space in
addition to physical space. As a side-effect, the paper discusses the need for and requirements on struc-
tured design of agent-based models and simulations.

Method: Model design was based on the MASQ meta-model and implemented in Python. The model was
then tested against several hypotheses with several initial networks.

Results: The model allowed us to investigate the effects of social networks. We found that the model was
most sensitive to the pair attributes of the network, rather than the global or personal attributes.
Conclusion: As demonstrated, a structured approach to model development is important in order to be
able to understand and apply the results, and for the model to be extensible in the future. Agent-based
modelling approaches allow for inclusion of social elements. For models incorporating social networks,
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testing the sensitivity to the initial network is important to ensure the model performs as expected.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Travel is derived from the activities in which people participate,
such as work, school, shopping, sport, leisure, and social events.
Non-discretionary activities such as work and school can be partly
explained by the traveller’s sociodemographic characteristics and
generalised travel costs [1], as well as by long-term decisions such
as a decision to move to a particular town. Participation in, and
scheduling of, other activities is not as easily predicted. Social
and leisure activities are the reported purpose for a large number
of trips, ranging from 25% to 40% for various countries [2].

Activity-travel simulations are used by transport and urban
planners to evaluate the travel effects of different scenarios. In these
simulations, activities involving one or more people are predicted
for a sample population. As this field moves towards more dynamic
environments, agent-based simulation is being used more fre-
quently to represent the decisions made by people and therefore
negotiation is a natural solution for activities where two or more
people have differing needs.

* Corresponding author.
E-mail address: n.a.ronald@tue.nl (N. Ronald).

0950-5849/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2011.12.004

In order to model joint activities, the transport modelling field is
experiencing a shift from understanding “where are people going”
and “what activity are they doing” towards “who are they interact-
ing with” (e.g.,[1,2]). We believe that the generation and scheduling
of social activities depends not only on the structure of the spatial
network, which is covered by “where” and “what”, but requires that
social networks, which means “who”, need to be incorporated as
well.

Given this interest in dynamics and interactions, multi-agent
simulation is becoming increasingly important in travel simula-
tion, travel analysis, and travel forecasting, in particular due to
its possibilities to model explicitly the individuals’ decision making
processes. In fact, all travel is a result of individual decisions, as
people try to manage their life in a satisfying way. As such, travel
can be seen as result of individual goals (e.g., go to work to earn
money, visit friends for pleasure) [3].

Social networks are a graph representation of individuals and
their relationships. Our overall hypothesis is that understanding
the social network that lies on top of the spatial network (as seen
in Fig. 1) should lead to better predictions of social activity sched-
ules and forecasts of travel patterns and demand for urban facili-
ties, in particular those relating to social and leisure activities.
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Fig. 1. A social network (blue) and an activity network (red), overlaid onto a spatial network. The thicker the blue lines, the stronger the relationship between the two people.
The thicker the red lines, the more often the person visits that location (which could be, for example, a cafe, park or theatre). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

This understanding could also influence the urban design of resi-
dential areas and public spaces, in order to encourage participation
in social/leisure activities in local communities.

However, a literature search did not reveal any agent-based ur-
ban models that consider joint decision making for joint activity-
travel choice of individuals. Existing work focus on the conceptual
or early implementation phases and concentrates on one or two as-
pects of selection, influence, and activity generation, which are the
concepts we have identified as being key to this domain [4]. The
domain contains extra complexity as space, time, and social as-
pects of the system need to be considered. There are few guidelines
available for the development of agent-based models that consider
these concepts. One issue amongst others discussed by Kliigl [5] is
that the “general intuitiveness of the modelling leads to a tendency
of ad hoc development”, which leads to difficulties when the model
is scaled or applied to the real world.

This paper demonstrates the design and implementation of an
agent-based model of social activity generation and scheduling
for experimental purposes to explore the effects of social space
in addition to physical space. Firstly, we present a review of re-
lated models. We then follow with a demonstration of using the
MASQ metamodel to design a model, in particular focusing on
the interaction design. An illustration of the model, based on util-
ity agents, is shown in which the input social network is altered
as an example of model testing. The performance of the model
with respect to the number of activities generated for individuals,
pairs of individuals and for the entire population is analysed. We
conclude with recommendations for other applications and future
work.

2. Background
2.1. From spatial to social

Activities are generated due to “physiological, psychological
and economical needs” [6]. A distinction is commonly made be-
tween subsistence (work-related), maintenance (keeping the
household running), and leisure. Leisure activities are difficult to
define: for example, what may be considered maintenance for
one person could be leisure for another [7].

A more detailed description of an activity is that it is “a contin-
uous interaction with the physical environment, a service or per-
son, within the same socio-spatial environment, which is of
importance to the person” [8]. Activities have a spatial element, a
temporal element, and also a social element. In the context of
transport research, the connection between “social networks, loca-
tional choices and travel” has not been investigated in detail [2];
the focus has been on space and time.

Spatial models also have a long history, and are mainly con-
cerned with tracing and predicting changes in the environment.
Transport models, or models of individual movement, are also con-
sidered to be spatial. The early models used an aggregate mathe-
matical approach, measuring the flows between small areas or
zones. This later developed into modelling individual trips, fol-
lowed by chains of trips (tours), and more recently activities, how-
ever the focus was still on individual decisions about travel and
activities. (A review of activity-based modelling, including the dis-
advantages of earlier models and also future directions, can be
found in [9].)
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Activity-based travel demand modelling has centered around
individual plans and scheduling, however the presence of joint
activities can influence individual plans [10]. As a result of this,
research into joint scheduling within households has grown in
importance. Activity-travel schedules need to be synchronised in
time and space. This is a more complicated task than it may seem.
As recognised in [10], sometimes household members may stay
longer or arrive earlier at a particular location.

In addition to these analytical studies, several models of joint
activity participation have been developed over the years [11,12].
These studies took into account the heads of households only.
Obviously, the problem of joint activity-participation involving
members of a social network is equally important for improving
transport demand models. Buliung and Kanaroglou [13] state that
some researchers are already looking beyond households to the
influence of social networks.

One of the first urban models was Schelling’s model of segrega-
tion, in which individuals were modelled in a cellular automata
environment and changed their location in order to satisfy their
needs for living among similar people. There is both a spatial and
social component to this model. Edmonds [14] extended this
model to include a social network, and individuals tried to align
themselves with their friends. This leans more towards social sim-
ulation, which is an experimental method for testing theories in
social sciences. These models revolve around the interactions
between social entities. In a larger scale model, Eubank et al. [15]
present a method for generating the network for determining the
spread of disease. They use TRIPS to generate people’s travel activ-
ity for a day. From that data, a bipartite graph linking people and
locations is created and an indication of colocations and possibili-
ties for spread is found.

Social networks are a representation of individuals (known as
nodes) and the relationships between them (known as links or
ties). From our point of view, the nodes are people, located in
space, who are connected to other people. Both the nodes and links
can have attributes. For example, a person node could contain age,
gender, and other sociodemographic information, while the rela-
tionship between two individuals can be defined in a number of
ways, for example how similar they are, how they are related to
each other, whether they interact or how often they interact, or
how information flows between them [16].

Networks can be represented in two ways: complete or per-
sonal. A complete network contains all of the relationships for all
the individuals in the network, for example, all the friendship links
between students in a class. Personal networks contain the rela-
tionships for a particular individual (known as the ego), however
the attributes of the people they name (known as alters) are pro-
vided by the ego rather than the alter themselves. It is not guaran-
teed that the personal networks of egos in the sample will
intersect. For transport applications, however, it is not possible to
survey an entire town and find out who knows who in order to cre-
ate a complete network. As a result, egocentric or personal net-
works are more useful for open systems. These focus on a single
person (an ego) and their links to other people (known as alters)
[17]. The individuals can be sampled from a larger population
and links between alters can also be investigated.

As Newman [18] recognised, research has been slow in under-
standing the actual workings of networked systems and the focus
has been on structural form and analysis. As a result, there are
many methods for generating (e.g., the small world model [19]
and the scale-free network [20]) and measurements for comparing
static, complete (and not necessarily social) networks (e.g., [21]).
However, it has been recognised that social networks have certain
properties, in particular with respect to the similarity between
people, their spatial proximity, the overall clustering coefficient
(i.e., how tightly-knit the network is) and the variation in size of

personal networks (e.g., how many friends do people have; also
known as the degree). Progress has been made with incorporating
spatial considerations into network generation [22-24]. These
models claim to model social networks more accurately than pre-
viously proposed models that do not consider distance between
network nodes. Hamill and Gilbert [23] presented a model known
as social circles, where two people are connected depending on the
distance between them. This distance could be social (e.g., based
on whether two people are similar in terms of age, gender, occupa-
tion, religion, or shared values, etc.) or spatial.

2.2. Existing work

In current state-of-the-art activity-travel models, social activi-
ties, if at all scheduled, are assigned to random locations and times
[25] and do not take into account the constraints or preferences of
friends. These activities, however, place constraints on other non-
social activities, which signals their importance in activity
scheduling.

Hackney and Marchal [26], building on previous work, devel-
oped a microsimulation which incorporated a social network on
top of a daily activity scheduler. The individuals in the system
exchange information with each other, either about locations or
about friends. Currently their system does not include collabora-
tive scheduling. However, the bulk of the research on the effects
of social networks on activities is at the data analysis stage. Indi-
viduals are surveyed about their social network and asked to com-
plete an activity diary for several days, listing who they interacted
with and the nature of the activity.

As part of the Connected Lives study, Carrasco [27] collected
data on individuals’ personal networks and interactions, then used
multi-level modelling to look for influences on frequencies of activ-
ities. The results showed that the number of components (i.e., sub-
groups), density (i.e., clustering), and degree of the personal
network influences the frequency of social interactions, and are a
better indication of frequency than the size of the network or iso-
lates. At an individual level, younger people tend to have a higher
frequency of activities, as do friends of similar ages at a pair level.

The latter is an example of homophily, which is based on the
idea that individuals interact with others who are similar to them
[28]. Homophilies can be separated into two groups: those based
on status, both ascribed (e.g., age, gender, etc.) and acquired (e.g.,
occupation, religion, etc.), and those based on values, such as atti-
tudes and beliefs.

Given the data collected for activity-travel modelling purposes,
at least two network generation algorithms have been developed.
Illenberger et al. [29] presented a model based on spatial distance,
while Arentze and Timmermans [30] developed an algorithm
based on spatial and social distance. The latter can also be ex-
tended to include the influence of common friends, following the
theory that if person 1 is friends with person 2 and person 3, then
persons 2 and 3 have a good chance of also being friends.

A theory currently being explored for generating discretionary
activities is based on needs. Activities both satisfy and generate
needs and needs grow over time [31]. Maslow’s hierarchy of needs
has been proposed as a starting point [32], however it is difficult to
collect data for model validation. A separate set of needs was pro-
posed by Arentze and Timmermans [31] which could be identified
through empirical research.

2.3. Agent-based modelling

There is recent interest in exploring social and leisure activities,
which requires different model functionality from existing
models which are individual-based. It appears that combining the
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interactive nature of social simulation with spatial models is a suit-
able approach for our proposed model.

Agent-based modelling and simulation is based on modelling
individual units (or agents) and the interactions between them.
The focus is on the individual actions and reactions to other agents
and the environment. As a result, it is frequently used for applica-
tions where the behaviour and intentions of heterogeneous individ-
uals and interaction between individuals is required. Both
Bonabeau [33] and Macal and North [34] present lists of system
attributes that are ideal for selecting agent-based modelling for that
system, including amongst others: agents have dynamic relation-
ships with other agents; relationships form and dissolve; agents
have a spatial component to their behaviours and interactions;
and the topology of the interactions is heterogeneous and complex.

According to Edmonds [14], “agent-based simulation seems to
be the only tool presently available that can adequately model
and explore the consequences of the interaction of social and phys-
ical space.”

Exploiting agent-based models in urban planning and geo-
graphic applications is a relatively new notion [35,36]. Most such
simulations are based on cellular automata (CA) techniques. How-
ever, CA techniques have several limitations when it comes to mod-
el individual decision and the human-like behaviours of urban
components. This lead to an increasing number of studies using
agent-based modelling for urban simulation, including the simula-
tion of residential dynamics in the city (e.g., [37]); the application of
agent-based models in studying the dynamics of pedestrian behav-
iour in streets (e.g., [38]) and modelling the discrete dynamics of
spatial events for mobility in carnivals and street parades (e.g.,
[39]). Nevertheless, most of these studies have approached model-
ling from a domain perspective, and provide few insights on the
structured application of agent concepts to urban simulation.

The real-life system that we want to create a model of consists
of different people, their relationships and interactions with each
other, and their activities in and possible movement around the
environment. The topology is not homogeneous and clusters may
form. Therefore agent-based modelling appears to be appropriate
for our model, due to the complex relationships and interactions
between individuals and the individuals’ situatedness in an urban
environment. These models also have the benefit of being more
behaviourally rich than statistical models, and should therefore
be more sensitive to the types of policy and environmental changes
that planners are interested in.

However, currently, agent-based modelling (ABM) is basically a
bottom-up approach from generative science, through which the
whole society can be formed and evolved from the individual
agents and their interactions [40]. That means that in current mod-
elling practices social structures are not explicitly considered but,
at most, are merely taken as properties of individual agents. To
reflect reality, social structures must be explicitly specified and
implemented independently of individual agents. This requires
theories to link micro and macro behaviour that are able to recon-
cile intentionality, deliberation, and autonomous planning with
playing social functions and contributing to the social order.
According to [41], a systemic framework is needed to help us
create a manageable snapshot of reality and define our models in
a sound, understandable and reproducible manner. In Section 4,
we discuss existing agent-oriented software methodologies and
propose the MASQ metamodel as a way to define agent-based
models.

3. Case study

Our focus in this paper is on social face-to-face activities. People
frequently interact face-to-face with each other. This could fulfill

several needs: to gather information, to share an experience, to
help one another, or for relaxation. Face-to-face or in-person inter-
action is sometimes also crucial for relationships to continue. Urry
[42] notes that “[e]specially in order to sustain particular relation-
ships with a friend or family or colleague that are ‘in the mind’, that
person has intermittently to be seen, sensed, through physical
copresence”. Following Arentze and Timmermans, we define social
activities to be those activities that involve commitments to meet
other persons at certain locations and times. Furthermore, these
commitments may impose constraints upon the times and loca-
tions of other activities [43].

The individuals in our model will interact and negotiate with
others to schedule social activities, in particular negotiating about
participants, time, and location. After participating in an activity,
individuals update their state depending on their satisfaction with
the activity. Individuals will also meet new people as a result of
activity participation, so just as their activities are influenced by
their social network, their network is influenced by their activity
participation.

This model will be an experimental tool that can be used by
planners to explore the effects of different parameters on travel
associated with social and leisure activities. Our spatial area of
interest is interactions of residents within a particular city, includ-
ing day-trips to neighbouring cities.

In this project, we are interested in ascertaining the influence of
social network typology (at global, dyad or pair-wise, and individ-
ual levels) on the number, frequency and type of social activities
between network nodes. This is necessary because incorporating
social networks into existing activity-travel models will add a lot
of complexity and require more intensive data collections. Testing
the sensitivity of potential models of activity behaviour to different
networks is an important step in evaluating the usefulness of their
incorporation.

4. Model design
4.1. Process

Several design methodologies have been developed for agent-
oriented applications. However, most methodologies are developed
for the engineering of “physical”, problem-solving or decision-mak-
ing, applications, which are characterised by open dynamic envi-
ronments, heterogenous participants and common goals. An
example is the control of a manufacturing system, where a software
agent could replace a human controlling a machine, or an open
auction system, where agents make offers on behalf of a human.

In such applications, it is possible for agents to be treated as
part of one, distributed system. Design starts therefore from the
analysis of the overall system, while the resulting software consists
mainly (if not exclusively) of the agents. The main concepts that
are used in these methodologies centre around goals, plans and
interaction protocols. However, these methodologies pay no atten-
tion to models of the environment in which the MAS should func-
tion. Specifying the environment is important for transport and
urban planning models, where the modellers are interested in
the effects on and of the environment. Well-known examples of
methodologies for MAS are Gaia [44], Prometheus [45], Roadmap
[46] and Tropos [47]. Some of these methodologies provide a
graphical design tool for MAS models (e.g., PDT for Prometheus
[48]) and support semi-automatic generation of agent code (e.g.,
the PDT can generate JACK code).

Wooldridge et al. [44] describe their Gaia methodology which is
divided into analysis (roles, interactions) and design (agents, ser-
vices, acquaintances). This was noted to be insufficient for open
systems, and was soon extended by Juan et al. [46] (as ROADMAP)
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for this purpose. One of the shortcomings of Gaia for modelling
purposes is the lack of separate environment model: this informa-
tion can be found in the role definitions [46]. ROADMAP kept the
analysis and design phases of Gaia, but added more models to
the analysis phase, which now consists of use-case, environment,
knowledge, role, protocol and interaction models.

Gaia purposely did not include a requirements phase, assuming
it was independent of the analysis and design. However, ROADMAP
does include specific requirements models. Another methodology,
Prometheus [45], which was developed for a particular architec-
ture of agents, provides some useful generic requirements models,
such as system goals and scenarios.

Another type of agent-based design methodologies centres on
the idea of organisation as first class concept. In these methodolo-
gies, roles are seen as positions in an organisational structure that
can be fulfilled by autonomous and independently developed
agents. Of importance is the balance between the organisational
goal and the goals of the agents (or global, system goal vs. local
goals). The fact that agents are seen as separate from the roles they
fulfil leads to the fact that social concepts like norms are explicitly
modelled. Examples of methodologies for this type of systems are
OperA [49] and MOISE+ [50]. Because the resulting systems are
seen as “open”, in the sense that agents can enter and leave the
system, the methodologies for agent organisations rely on other
methodologies for the design of the agents themselves. The previ-
ous methodologies impose some form of process. Another method-
ology, INGENIAS [51], does not, however provides views of the
world, including models of agents, interactions, tasks/goals, organ-
isations, and the environment.

An effort has been made to create a compilation of several meta-
models currently in use that can be used as a reference point to
achieve some form of standardisation and maturity [52]. The com-
mon models were found to be agent, role, tasks, and communica-
tion. Other important elements were environment, organisation
and social structure, cooperation, mental attitudes, and services.

Kliigl [5] notes that agent-based simulation differs to agent-
based software engineering (AOSE), but some of the concepts from
AOSE can still be used, especially in the absence of a fully-usable
meta-model for agent-based simulation. This was seconded by
Heath et al. [41], who state that methods must be adapted or
developed specifically for ABM for the approach to reach some sort
of maturity. Drogooul et al. [53] presented a description of a meth-
odology, but focussed more on the people involved in the design of
a model rather than the detailed steps.

Methodologies for agent-based modelling and simulation
should follow the standard development cycle, including analysis,
conceptual design, detailed design, implementation and testing,
and maintenance, but should specifically support the design of
an (agent-based) model of an (existing or fictional) real system,
and contain the guidelines to conduct experiments with this model
for the purpose of understanding the behaviour of the system and/
or evaluating various strategies for the operation of the system. In
particular, comprehensive methodologies for the conceptualisation
and implementation of agent-based (social) simulations, should
enable analysis of and represent the concepts that exist in a real-
world domain or society, such as ways to provide a detailed defini-
tion of individuals and the social and physical environments which
constraint or facilitate their behaviour and interactions. Further-
more, the dynamic context which the individuals perform actions
in also requires intricate definition.

Some of the traditional AOSE methodologies have properties
that make them more suitable for MABS, for example, an emphasis
on cooperation and emergence. Bernon et al. [54] describe ADELFE,
which was developed for adaptive multi-agent systems. The agents
are considered to be cooperative, and the emphasis is on how local
interactions lead to a global system. However, these methodologies

still lack or have limited components for culture, social-cognitive
reasoning, values and norms, which are required for fully-fledged
MABS.

4.2. MASQ metamodel

As discussed in the previous subsection, methodologies directed
specifically to agent-based modelling and simulation are so for
mostly non-existent. Development of a standard methodology, as
a defined, repeatable series of steps to address a particular type
of problem, requires knowledge acquired from a large number of
simulation projects in different application domains, which are
not yet available in the area of agent-based modelling and simula-
tion. Nevertheless, in a effort to provide methodological founda-
tions to our work, we have taken meta-modelling as a starting
point for the development of our model. Recently, the MASQ
meta-model has been proposed with the aim of describing a mul-
ti-agent system (MAS) in all its aspects (actors, environment, inter-
action, organisations and institutions) [55,56]. Such a meta-model
is a principled approach to describes how and with what the archi-
tecture will be described in a structured way. MASQ is applicable
both for the engineering of multi-agent systems as for the design
of agent-based simulation [57]. MASQ is based on a 4-quadrant
framework [58], where the analysis and design of a system is per-
formed along two axes: an interior/exterior axis, and an individual/
collective axis. In this section, we introduce the main concepts of
the MASQ meta-model.

Distinguishing between exterior and interior perspective means
distinguishing facts (objectivity) and opinions (subjectivity). From
the exterior perspective we consider what is observable in the
environment (e.g., a behaviour exhibited by an agent, a property
of an object), whereas from the interior perspective we consider
the mental representations about the environment, the decision-
making processes, and more generally anything which is a matter
of interpretation.

The individual/collective distinction is commonly used to ana-
lyse complex systems. From an individual point of view, each
atomic component of the system is described by itself, where as
from a collective point of view the system is described in terms
of the relations which link together all its components and the
interactions that occur between them.

A 4-quadrant framework consists of the combination of these
two axes - interior vs. exterior, and individual vs. collective. This
is shown in Fig. 2.

4.2.1. MASQ components

MASQ provides four basic constructs — Mind, Object/Body, Space,
Culture - to describe a complex social system, each of them captur-
ing one of the four quadrants.

Mind. (Interior-Individual) A mind is the internal architecture of
an agent, i.e., its decision-making component. The mind is respon-
sible for the behaviour selection of the agent (what it intends to
do), but not for the behaviour execution (what it can do and what
it actually does in the environment). This behaviour selection takes
as input the perceptions delivered by the environment.

Object/Body. (Exterior-Individual) Objects and bodies are individ-
ual entities that compose the environment. They are characterised
by a static state which describes their properties (e.g., the dimen-
sion of a ball), and a dynamic state which describes their individual
activity (e.g., a ball which is rolling). Unlike minds, objects and
bodies are neither proactive, nor autonomous. Their evolution is
entirely determined by the laws of the environment and the differ-
ent activities that occur in it.

Bodies are special objects that are connected to a mind. A body
allows its mind to act on its environment, perceive it and be per-
ceived by other minds. It is the manifestation of an agent in its
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individual

External = Individual
Objectivity

Internal = Individual
Subjectivity

mental states, emotions, beliefs,
desires, intentions, ...

agent behaviour, object,
process, physical entities

internal
[eusapxa

Internal - Collective
Intersubjectivity

External - Collective
Interobjectivity

share knowledge, social norms,
conventions, ontology,
collective representations

Environment, relationships,
reified social structures

collective

Fig. 2. The four quadrants of the MASQ meta-model.

environment; it allows its very existence in it. A mind does not
have an absolute control over its body but may influence it. A body
then reacts to the received influences according to the laws of the
environment. Thus, the body allows for the definition of the action
capabilities of an agent within the environment.

Space. (Exterior-Collective) The overall environment is described
through several spaces. A space describes roles, relationships and
forms a boundary between its objects and the rest of the environ-
ment (an object belongs to one space). Each space establishes the
structure which interconnects its objects (e.g., a spatial topology,
a network, .. .), handles the interferences that result from the com-
bination of the individual activities (e.g., a collision between two
rolling balls) and defines its own dynamics (e.g., gravity).

Agents interact in a space through the enactment of roles,
which describe the agent’s body in that space. That role represents
a specific context for their activities and interactions with the other
entities of the space. One agent has a unique mind but may have
several bodies (i.e., enact several roles) in different spaces. There-
fore different types of activity can be modelled separately by dif-
ferent spaces, each of them defining a specific structure and
dynamics. Moreover, the concept of space can be used to model
both physical and social environments. A social space models spe-
cific and deterministic social structures of interaction and contains
social bodies, a social body being the manifestation of an agent
playing a role.

Culture. (Interior-Collective) The environment, which is de-
scribed by spaces and objects, is factual: things are as they are. It
constitutes the brute reality in the sense given by Searle [59]. A cul-
ture provides means for a group of individuals to build cultural (or
institutional) interpretations of the environment. The interpreta-
tion mechanisms provided by a culture are not proper to a single
individual, but are shared by a group of individuals; they are based
on the notions of constitutive and regulative rules defined by Searle
in [59]. In MASQ, culture enables the representation of institutional
or organisational facts, such as dependencies, norms and values.

4.2.2. MASQ for modelling social activities

We have based the design of our model on MASQ, focusing on
agents goals, the environment, acquaintances, roles, and services.
The interaction model is explained in more detail in Section 5.

Minds enable the description of the internal part of the agents
(the people being modelled). It includes the definition of their spe-
cific goals and the specification of their decision-making strategies
Minds also define what are the internal costs related to the social
activities such as the cognitive costs induced by information pro-
cessing deciding on a joint activity, but also the actual travel costs

(time, distance, price). Finally, each mind may contain functions to
evaluate its performance satisfaction. Performance satisfaction is
defined in [60] as the degree in which an activity or transaction
meets the expectation of the actor. Performance satisfaction allows
to measure the value of specific social activities for each actor.

The goals of the agents in our system are derived from the social
needs of humans. These include interacting with, and gaining the
respect and esteem of others. Minds therefore have the following
goals:

e Making and maintaining (longterm) relationships with other
people.

e Sharing experiences with other people, in the form of joint
activity participation, possibly within a group/club setting.

e Sharing (giving and gaining) information with other people.

e Learning individually about their local environment.

Levels of achievement are measured individually, e.g., everyone
will have some level of satisfaction. If they are not satisfied with
their current situation, then they will try to change it. The same
applies to how involved people will be in the community - it
depends on their needs.

In order to meet its goals an individual will initiate and partic-
ipate in discussions about activities, as well as participating in the
activity itself. Utility maximisation is used to determine the pre-
ferred activity choices. Furthermore, the agents in our model each
have an agenda consisting of activities they have already
scheduled.

Spaces describe the various interaction structures. The physical
space has a link-based representation, derived from the actual road
network. The links contain the actual distance, as well as some idea
of the travel time for different modes. The nodes exist at a point in
space, and most (if not all) nodes contain a location, which is a
facility where (joint) activities can be undertaken. Note that, each
individual will have their own representation of this environment
to account for limited knowledge and information.

Another space is the acquaintance space, or social network. Each
person has a set of acquaintances, where each link defines the type
of relationship (e.g., family, work, friend) and also how long it has
been since they last saw each other. Each pair of agents has a sim-
ilarity measure, which follows from the notion of homophily. Links
are undirected, meaning that friendships are mutual. The social
structure of our model is similar to the CASE model proposed by
Zhang et al. [61], however a difference is that our neighbourhood
is static.

As for the physical space, each agent will have its internal rep-
resentation of the acquaintance space. Using the ideas presented in
Section 2, our friend selection model is based on the similarity
between two people, the geographic distance between them, and
their friends in common. When considering proposing or partici-
pating in an activity, the agent’s time availability, the opportunity
costs, the time since they last saw the other agent, the social credit
balance between the two agents, and their satisfaction from their
last encounter are also taken into account.

Bodies describe the external part of actors which includes their
external properties (the attributes that can be perceived within the
environment), their action and perception capabilities and their
resources available to perform these actions.

Bodies are associated with the different spaces. The Social body
enables agents to interact and negotiate with others to schedule
social activities, in particular negotiating about participants, time,
and location. After participating in an activity, individuals update
their state depending on their satisfaction with the activity.

Individuals will also meet new people as a result of activity
participation, and another task is the maintenance of a personal
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network. Just as their activities are influenced by their social net-
work, their network is influenced by their activity participation.

As agents participate in or discuss activities, they may visit or
learn about new locations. This is an activity associated with their
body in the physical space. The individuals will also keep track of
the locations they are familiar with. They may share them with
others, which is a form of influence.

Aside from bodies, we use objects to model the passive ele-
ments such as the characteristics of specific locations (type, activ-
ities possible, etc.). There are several different types of location,
and each type has a set of attributes. The major distinction is
between a private residence and a public location. As an example,
the latter will have opening hours. Categories of public locations
include restaurants/cafés, cultural locations (e.g., museums,
theatres), green space, and sport centres/gyms.

The Culture quadrant describes the rules of interaction and the
social expectations of the agents. An example of such rule is reci-
procity, i.e., agents are expected to return visits to others in their
network. Culture also determines the likelihood of meeting at
someone’s home or in a public place, and the frequency and type
of social interactions.

5. Detailed design

Interactions between agents are an important component of
agent-based applications. The individuals in our model each have
an agenda, and interact and negotiate with others to schedule
social activities, in particular negotiating about the nature of the
activity, participants, time, and location.

This means that current methods of modelling decision pro-
cesses in an individual manner will need to be revised to take into
account that many decisions are made jointly. In some cases, joint
activity decision making within households has been investigated,
however existing models do not capture the actual mechanisms
behind the decision making. Moreover, these models focus on
interactions within households and have not considered personal
social networks at large.

However, there are two triggers for beginning an interaction:

“When one goes to a ball game with friends, is the activity social,
or entertainment? The answer probably affects the activity
choice process, including the choice set of perceived alterna-
tives: if the primary motivation is social, one may first decide

to get together with friends, and then choose an activity around
which to organise the gathering, whereas if the primary motiva-
tion is entertainment, one may first decide to attend the ball
game and then see who else is able to join.” [7]

Therefore, both activities and acquaintances need to be evalu-
ated to see whether there is a need to be satisfied.

Agent interactions have several components: the negotiation
set (the possible proposals), a protocol, strategies, and a rule to
determine that the interaction is complete [62]. For the negotiation
set, we have developed a list of activity patterns, including the
activity purpose and location, as well as an indication of which
acquaintances are likely to be involved and when (e.g., interacting
socially with work colleagues is likely to be during the week,
whereas visiting family is mostly a weekend activity).

The protocols we use are based on those developed by Wainer
et al. [63] for agreeing on a meeting time. As these protocols are
concerned with only one issue (time), elements from multi-issue
negotiation need to be incorporated. Fatima et al. [64] explains
three methods for dealing with issues in multi-issue negotiation:
all issues are discussed together (package deal), issues are dis-
cussed separately and independently of each other (simultaneous),
or issues are discussed one after the other (sequential). Although it
has been shown that proposing complete deals at each step is
computationally more complex, it has advantages such as Pareto
optimality [64]. In our model, it is too difficult to decide issues
independently (for example, the activity may determine the time
and location or vice versa) and also determine in which order they
should be discussed (should we decide on the activity first? or who
we want to see? or when we are free?), therefore we use the pack-
age deal method.

5.1. System architecture

The model consists of six modules: input, simulation, environ-
ment, population, schedule, and output. Within population, a com-
munication module is located. The overall system architecture
showing the package structure and the flow of control is depicted
in Fig. 3, which are described below in more detail.

5.1.1. Input

Several input files are required for the model to run. This mod-
ule reads in the details of the environment, the details of the indi-
viduals in the population, and the values of parameters.

Flow of control
1 i . 1
«subsystem» 4 «subsystem» M- asubsystem»
Input Simulation 1 1 Output
[ X X ]
1 1
1 1 1
asubsystem» «subsystem» «subsystem»
Environment Population Schedule

Fig. 3. Overview of system architecture.
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5.1.2. Simulation
The simulation runs as follows:

1. Initialise:
(@) Read parameters from file
(b) Initialise environment
(c) Initialise population
2. For each day:
(@) shuffle individuals
(b) For each person:
i. Determine if they want to start an
interaction on that day
ii. If so, start interaction
iii. If interaction completes successfully,
possibly schedule activity
() For each time of day:
i. Find activities to execute
ii. For each activity:
e Each participant updates self: visited
location today, undertakenactivity today, travel
e Fach pair updates self: last seen today,
travel
3. Print outputs

5.1.3. Environment
The global (city) network is stored as a network, with location
details for some of the nodes.

5.1.4. Population
The population module stores the agents, the social network
and the communication module.

5.1.5. Schedule

The schedule stores the activities for each person, as well as all
the activities in the system. Each day is divided into four parts:
morning, afternoon, evening and night. No activities take place at

night. Dividing the day into hours is too detailed. Note that the
model described in this paper ignores time of day for simplification.

5.1.6. Output

In this version, five outputs files are produced: personal, pair,
conversation, schedule, and activity. These are further discussed
in Section 8.

5.2. Agents and utility

The model consists of agents located in a spatial environment,
where they have a home location. This environment is represented
by a network of locations. Each agent has a list of other agents he/
she is friends with and a list of locations that he/she knows. Each
agent has sociodemographic attributes (e.g., age, gender, car own-
ership, work status, etc.) and a schedule with a certain number of
time periods. Each agent can undertake maximally one activity per
time period. Fig. 4 shows the agent architecture.

In this paper we focus on the second goal of joint activity partic-
ipation. Utility-based agents are used as this allows the agents to
evaluate the outcomes of participating in different activities. This
has advantages and disadvantages: utility functions are difficult
to develop and tend to oversimplify the real-world processes
[62], however as the aim is to create a model of a sample popula-
tion for a city, i.e., thousands of agents, the agent model needs to be
simple in order to be scalable. Utility functions are commonly used
in transport models for evaluating alternatives and making deci-
sions [65].

A utility function (Eq. (1)) has been developed to take into ac-
count the required issues - type (a) and purpose (p) of the activity,
location (1), day (d), the other person involved (j), essentially, what,
where when and who. This is based on the needs-based theory dis-
cussed in Section 2.2.

Ui(a,p,L,d,j) = VP + Vi+ V € (1)
VO — fi (0P, d — tgp) (2)

E.g, invites, iffo Process

K;

] =}

E.g. do activity

1L

Generation and evaluation

Environment:
Others/Transport network

—~

;
5

J

E.g. respond to request Act E g Upg

late self

Fig. 4. The agents’ architecture.
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Vi=f(1-dy,d-1t) (3)
Vi = fi(sy d - t)) (4)
e 5
Sij = Qg +Qq (6)

Activities can have a purpose, chosen from sharing experiences,
sharing information, informal chatting, and support. The different
purposes can be used to determine who is suitable for a given activ-
ity. Activities can also have a type, such as shopping, eating out, or
sporting activities, which determines the location of the activity.
In future, this will be also used to determine the duration of the
activity.

The components of the utility function U; consider when an
individual last undertook an activity (Eq. (2)), visited a location
(Eq. (3)), or saw someone (Eq. (4)). These values (t;, tqp, £j) are com-
bined with the date of the proposed activity d to find the last time
the particular event happened. The utility increases over time (Eq.
(5)), so that an activity/location/person that an individual has not
seen/visited for a while is more attractive than one seen/visited
the previous day. This is based on the needs-based theory pre-
sented by Arentze et al. [31].

The preferences for an activity with a particular purpose and
type (o) is also an input to the model. In this instance of the model,
we consider preferences to be unidimensional as a simplification. It
could be that preferences are dependent on the composition of the
group, for example, in terms of gender, cultural background, size of
the group etc.

The distance to the location (d;) is also taken into account,
based on the individual perception of the environment and travel
time. For each pair of individuals i and j, a similarity measure
was calculated (Eq. (6)), taking into account age (a) and gender
(g). The values of d;; and s; are scaled to [0, 1].

5.3. Interaction protocol

The decision to start an interaction depends on whether the
utility of meeting a particular person (or group of people) or under-
taking a particular activity exceeds a threshold. This is calculated
using the relevant components of Eq. (1). The individual who
begins an interaction is known as the host, and the other partici-
pants are respondents.

We further assume that interactions and activities are under-
taken between two agents, who are connected to each other in
the social network. This means that the social and location net-
works do not change (as new connections are not being made),
therefore the centrality calculations do not change.

Agent i, the host, makes a decision to start an interaction using
an altered utility function, where the initial location [ is set to the
other agent’s (j; the participant) house:

Vjil =f(1 —dy,t)) (8)

If Us exceeds i’s threshold, the host and participant exchange
ideas for days and locations.

1. Host proposes an activity as a starting point.

2. The respondent then creates a list of the possible day/time com-
binations (taking into account the host’s time window) and
sends them to the host.

3. The host collates the day/times and creates a list of the intersec-
tion of the suggestions.

4. The respondent determines what type of locations are appropri-
ate from the patterns provided. They then look up which loca-
tions they know of that match those location types.

5. The host collates the locations and creates a list of the union of
the suggestions.

6. The host then creates a list of possible activities, taking into
account when agents are available and the locations they have
suggested. The list is returned to the respondent.

7. The respondent evaluates this list using a utility function and
returns the list with their preferences.

8. Using the Borda ranking method, the host determines the cho-
sen option and notifies the respondent, who adds the activity to
their schedule. The host also adds the activity to its schedule.

Negotiations can be unsuccessful if neither individual is avail-
able on the same day, neither can suggest any suitable locations,
or one individual finds that the utility of all proposed activities
does not exceed their threshold.

The protocol satisfies a number of basic properties, such as ter-
mination, liveness, and safety. The protocol contains no loops and
is completed in a constant number of rounds. All messages are sent
from one role to another (either from host to respondent or vice
versa) and the messages are unambiguous regarding the next step.
Both roles proceed towards termination states, either when an
activity has been scheduled, when a respondent cannot suggest
any suitable days or does not approve of the activities suggested,
or all parties cannot agree on options to negotiate about.

6. Network inputs

For all input networks, the agent population was constant, with
the same personal properties (age, gender), thresholds and param-
eters, and home location. One hundred agents were present in each
network. The average degree was kept roughly the same (~10),
which is in line with analysis of friendship/social interaction net-
works [30].

Four different networks were generated. The first was a random
graph based on Erdos-Renyi random graph [66], randomly gener-
ated by the NetworkX package for Python [67]. This network is
shown in Fig. 5.

The other networks were based on the social circles algorithm
[23]. All individuals used the same distance size for simplicity,

k)
Pajek

Fig. 5. The random network.
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k)
Pajek

Fig. 6. The social circles network taking into account spatial distance.

k)
Pajek

Fig. 7. The social circles network taking into account social distance.

however this varied per network in order to meet the average de-
gree requirement. The social distance was based on Eq. (6).

A
Pajek

Fig. 8. The social circles network taking into account spatial and social distance.

The second network used only spatial distance as the distance
measurement (Fig. 6).

The third used only social distance as the distance measure-
ment (Fig. 7).

The fourth used both spatial and social distance as the distance
measurement (Fig. 8).

The different social networks have differing clustering coeffi-
cients and assortativity on degree (i.e., nodes are connected to
other nodes with similar number of nodes [18]) and on node attri-
butes such as age, gender, and activity threshold. A value of 1 for
assortativity indicates a perfect correlation on the attribute for
pairs in that network, while a value of —1 indicates a negative
correlation.

These properties are shown in Table 1.

7. An illustrative scenario

In this scenario, the only locations present are home locations.
This means, that for an activity between two agents, only two loca-
tions are possible. Activities were also scheduled for the current
time period, however the protocol does allow for looking ahead.
For the one activity type and purpose, %homesociat Was set to 0.5.
Each agent has an activity threshold randomly chosen from
[0.5,1,1.5,2.0].

The agents all use the same utility function and negotiation pro-
tocol. Each agent also has an age level in the range [1-4], which is
consistent with the aggregation used in activity-travel surveys
(e.g., [30]). The gender similarity is Q,=1 if two agents have
the same gender, and Q, =0 otherwise. For age, following [30],

Table 1
The properties of the different social networks.
Type Degree Cluster Assort (degree) Assort (threshold) Assort (age) Assort (gender)
Random 10.141 0.105 0.036 0.017 —-0.021 —0.040
Spatial 10.141 0.509 0.531 0.009 0.069 —-0.052
Social 12.040 1 1 0.0112 1 1
Soc/spa 10.505 0.491 0.264 0 0.862 0.565
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Q, =4 — n, where n is the difference between the two age classes.
The overall similarity or social distance s;; is scaled to [0, 1].

The error term takes into account the location (N(0, 0.2)), each
participant (N(0, 0.1)), and a personal short- (i.e.,, drawn every
timestep, N(0, 0.5)) and long-term (i.e., drawn at the start of the
simulation, N(0, 0.2)) error.

The model was run for 28 time periods as a warmup, and then
for a further 28 time periods to collect data. As a multi-period
model, this is a departure from previous transport models that
attempt to optimise one period (usually a day) only.

The aim of the experiment is to validate the following
hypotheses:

H1. The network structure will affect the number of activities.

H2. The network properties will affect the number of activities.

H3. At the node level, the distribution of activities will be differ-
ent for different input networks and the node attributes
(degree, clustering) will affect the number of activities.

H4. At the relationship level, the distribution of activities will be
different for different input networks and the dyad attributes
(similarity, distance) will affect the number of activities.

H5. The interaction protocol will be sensitive to different input
networks in terms of the number of successfully and unsuc-
cessfully negotiated activities.

8. Results and discussion

All analysis was done in R, a statistical analysis package. ANOVA
tests were used to measure the difference in means of output vari-
ables for different input networks, while Kolmogorov-Smirnov
tests can indicate whether two distributions are similar. The p indi-
cates the significance of each test and r denotes the correlation
coefficient. If p is less than 0.05, then this indicates that the result
is statistically significant.

8.1. Hypothesis 1: The overall network structure

The effect of the overall network structure on the number of
activities was measured using an ANOVA test. The result suggested
a significant difference between the input network types
(p <0.001).

This means that Hypothesis 1 can be accepted, as the network
structure affects the number of activities.

8.2. Hypothesis 2: The network properties

The correlation between each network property (clustering
coefficient, assortativity on degree) and the number of activities
was not significant. This indicates that these aggregate measure-
ments are not a good indication of the outcomes of the processes
in the system and therefore Hypothesis 2 cannot be accepted.

8.3. Hypothesis 3: At the node level

By averaging the number of activities across the ten runs for
each person, the distribution of the activities can be measured.
Using a Kolmogorov-Smirnov test can indicate whether the distri-
butions are similar or not.

The distributions at the node level are not significantly dissim-
ilar, as shown in Figs. 9-12.

The correlation of the number of activities per person and their
centrality or degree is significant (p < 0.001, r=0.216). This could
be because those with more friends have more opportunity to
engage in activities. The threshold for activities is also significant
(p <0.001, r=—0.328), meaning that those with lower thresholds
are participating in more activities as expected. The individual
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Fig. 9. The distribution of activities for the random network.
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Fig. 11. The distribution of activities for the social network.

clustering coefficient is not significant, as activities are limited to
only two agents. We would expect this to become significant if
larger group sizes are modelled.

Although some individual properties are significant, as the over-
all distribution of activities is not dissimilar, Hypothesis 3 cannot
be accepted.
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Fig. 12. The distribution of activities for the social/spatial network.
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Fig. 13. The distribution of activities per pair for the random network.

8.4. Hypothesis 4: At the relationship level

As with the personal level, the activities across runs for each
pair were averaged. The distributions at pair level were significant
(all p<0.01), with the exception of the random network and the
social/spatial distance network (p=0.70). The distributions can
be seen in Figs. 13-16.

There was a very weak correlation between the similarity of
pairs and activities (p < 0.05, r = 0.041).

The correlation between distance between pairs and the num-
ber of activities was stronger (p < 0.001, r = —0.347), which shows
that pairs who live closer to each other are engaging in more activ-
ities together.

These results indicate that the relationship level attributes of
the network are more significant than the overall or the node attri-
butes and therefore Hypothesis 4 can be accepted.

8.5. Hypothesis 5: Performance of the protocol

We expect that the negotiation protocol is sensitive to the net-
work. The protocol can fail at two points: if agents are not available
at the same time, or there is no overlap in the preferred activities
(e.g., both agents want to do completely different activities, or
one does not like any of the options).

We have already shown that the successful activities differs for
each network. The unsuccessful activities due to time (p < 0.1) and
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Fig. 14. The distribution of activities per pair for the spatial network.
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Fig. 15. The distribution of activities per pair for the social network.

due to activity disagreement (p <0.01) also differs for each net-
work. Table 2 shows the average for each type.

The networks with some sort of spatial component performed
better; with these networks as a base, agents are less likely to de-
cline an activity based on distance.

From these results, Hypothesis 5 can be accepted.
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Fig. 16. The distribution of activities per pair for the social/spatial network.
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Table 2
The number of successful and unsuccessful negotiations.

Network Successful Unsuccessful (time) Unsuccessful (activity)
Random 868.2 834.2 437.5
Spatial 967.5 876.5 178.7
Social 882.7 834.4 405.5
Soc/spa 951.3 868.8 200.7
8.6. Summary

The experiment shows that overall, the key factor is not the
overall structure of the network, but the nature of the links be-
tween agents.

Whether spatial or social distance is given more weight in the
utility function will also influence the outcomes. In this experi-
ment, they were treated equally.

9. Discussion and conclusions

This paper describes the design and implementation of an
agent-based model of social activity generation and scheduling
for experimental purposes to explore the effects of social space
in addition to physical space. Due to the current interest in predict-
ing social activities and the changing nature of social activities due
to our use of information and communication technologies, this
type of model is relevant for planners who need to be able to pre-
dict social activities and travel.

Multi-agent simulation is a useful method for modelling the
decision-making processes undertaken by individuals, in this case,
regarding whether they participate in a social activity with other
people or not. However, even though many AOSE methodologies
have been developed, none are specifically for agent-based simula-
tion. We have used the MASQ meta-model as a basis for the mod-
elling process and combined features of several methodologies to
demonstrate a design.

Current research assumes that social networks influence social
activities [31], therefore testing the sensitivity of potential deci-
sion-making models to different networks is an important step in
evaluating the usefulness of incorporating social networks in activ-
ity-travel models. This step could also important for other domains
where the social network is influential, e.g., social support net-
works or exchange networks [68].

We have described an agent-based simulation of social activi-
ties and discussed the results of experimentation with several in-
put networks, differing in structure and properties. We show that
the relationship properties within the network are more significant
than individual or overall network properties for this type of mod-
el. However, as the model is developed further, some personal or
network properties could become important. For example, people
can only maintain a certain number of friends, so the degree
becomes important.

We also describe joint decision processes for scheduling social
activities with many participants. The use of interaction protocols
for inter-agent communication is not radical from the point of view
of the agent community, however it is novel for activity scheduling
and is not often seen in social simulation. The different interactions
we describe permit a more decentralised and collaborative ap-
proach to joint activity scheduling, that is better aligned with both
the principles of agent-based modelling and decision making in
reality than determining schedules individually or within a house-
hold. Unlike other activity-based models, activities are jointly
scheduled outside households. Although other models (e.g., [26])
have included the effects of social influence, they have not mod-
elled the scheduling process.

The model was simplified to one activity type/purpose and no
network dynamics, so that the effects of the input network could
be seen. Future work involves extending the model to include fur-
ther details about activities (including different locations, activities
with more than two participants, and taking into account time
pressures/value of time), experimenting with agents using differ-
ent utility functions and/or negotiation protocols, and exploring
the effects of social distance/homophily in closer detail, in particu-
lar in the context of cultural characteristics. The use of the MASQ
metamodel, which contains a Culture quadrant, means cultural
extensions can be easily incorporated. As interactions and negoti-
ations differ across cultures [69], the interaction protocols could
be refined further to take culture more into account.

The results of the model can be used by city planners to evaluate
the effects on social activities and travel of both changes in popula-
tion and their characteristics (e.g., increasing elderly population, an
increase/decrease in car ownership) and changes in infrastructure
(e.g., public transport routes, locations of new shopping facilities).

As research into the effects of social networks on travel behav-
iour is in its early stages, there are little data available and as a re-
sult most models are in early stages of development. Research into
how these models can be validated is in progress [70]. However,
this work can be seen as a step forward in the requirements for
sensitivity testing of such models.
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